Doc Biwee
English
English
  • Presentation of Biwee
  • Get Started
    • Install Biwee
    • Video : My first steps with Biwee
  • Create dashboard
    • Add a visual component
      • Chart
      • Pie
      • Cards
      • Treemap
      • Text Box
      • Pivot Grid
      • Tabs
      • Scatter Chart
      • Gauge
      • Images
      • Grid
      • Range Filter
      • Filter Elements
      • Geo Points Map
      • Choropleth Map
      • Groups
    • Right-click on a component
    • Export a visual component
    • Maximize a visual component
    • Interactivity of a component
    • Data filters in components
    • Dashboard parameters
    • Conditionnal formatting
    • Interactions between dashboard
  • API Integration
  • Data Analyse
    • Performing calculations on data
    • Configure a calculated field
    • Directory of functions
    • Configure calcul in a visual component
    • Aggregate function
      • Aggregations at an intermediate level
      • Usage examples and use cases for the aggr() function
    • Window calculation
  • Settings
    • My account
    • User groups
    • Agent
    • Company settings
    • Options
    • About Biwee
  • Data connection
    • Introduction
    • Database connectors
    • Social network connectors
    • Emailing connectors
    • Files connectors
    • Other connectors
  • Sharing in Biwee
  • Creation of queries
    • Queries on databases
    • SQL Querie parameters
  • Back office biwee
    • User management
  • Changelog
    • Version 3.3
Propulsé par GitBook
Sur cette page
  • Introduction
  • More detailed granularity

Cet article vous a-t-il été utile ?

  1. Data Analyse
  2. Aggregate function

Aggregations at an intermediate level

PrécédentAggregate functionSuivantUsage examples and use cases for the aggr() function

Dernière mise à jour il y a 3 ans

Cet article vous a-t-il été utile ?

A dashboard can display aggregated data at different levels, by specifying the dimensions on which you want to aggregate.

Introduction

The aggr() function allows to perform an aggregation according to the chosen function on a set of predefined dimensions. This function can be used in calculated fields. The first argument is a summary expression calculated with respect to a specific data source field. The next arguments are the dimensions that define the calculation level.

aggr(SummaryExpression, Dimension1, Dimension2, ...)

For example, the following function calculates the annual product sales:

aggr(Sum([Sales]),[Product],GetYear([Date]))

The first argument of the function is the summary expression calculated on the specified source field. The following arguments represent a set of dimensions that will be used to calculate the aggregations using the function specified in the first argument. For example the following function calculates the sum of sales for each product category, and returns this result even if the displayed data is more detailed.

We create the following function Sales Amount per category:

aggr(Sum([Sales Amount]), [Category]) 

We have a grid with the fields Category, Subcategory and Sales Amount. The amount displayed is the amount per subcategory and not per category.

We add the previously calculated field Sales Amount per category to the grid and we obtain :

More detailed granularity

To aggregate the data by category and subcategory, you can create the calculated field "Amount by subcategory" with the following expression:

Aggr(Sum([Sales Amount]), [Category],[Subcategory]) 

The next grid of the dashboard presents data less detailed than the calculated field: category and sales amount.

If you add the previous calculated field, with the Min aggregation function, you get the following result:

The grid shows you the sales of the subcategory with the lowest revenue for each category.